Exercice1

Montrer que la fonction suivante est une densité

$$f(x) = \begin{cases} -\frac{1}{4}x + \frac{1}{4}si - 1 \le x \le 1\\ \frac{1}{4}x - \frac{1}{4}si \ 1 \le x \le 3\\ 0 & sinon \end{cases}$$

Exercice2

Soit X une variable aléatoire de fonction de répartition
$$F_X$$
 définie par
$$f(x) = \begin{cases} 0 & \text{si } t < 0 \\ \frac{t}{2} & \text{si } 0 \le t \le 2 \\ 1 & \text{si } 2 \le t \end{cases}$$

- 1- Représentez graphiquement cette fonction de répartition
- 2- Déterminer la densité de probabilité et sa représentation graphique
- 3- Calculer son espérance et sa variance

Exercice3

Donner la valeur de P(|X| < 5) sachant que X est une variable aléatoire normale de moyenne 1 et d'écart type 2

Exercice 4

Donner la valeur de α telle que $P(|X| < 1,25) = \alpha$ sachant que X est une variable aléatoire normale de moyenne 0,5 et d'écart type 1

Exercice 5

Soit X une variable aléatoire suivant une loi Khi-Deux X^2 à 5 degrés de liberté.

Déterminer a tel que

1-
$$P(0 < X < a) = 0.95$$

2-
$$P(|X| < a) = 0.95$$

Exercice 6

Soit X une variable aléatoire suivant une loi de Student à 7 degrés de liberté. Chercher θ tel que

1-
$$P(X < \theta) = 0.95$$

2-
$$P(X < \theta) = 0.05$$

Exercice 7

Soit X une variable aléatoire suivant une loi de Fisher à 7,4 degrés de liberté. Chercher a et b tels que:

$$P(b < X) = 0.01$$
 ; $P(X < a) = 0.95$